
Towards J.A.R.V.I.S. for Software Engineering:
Lessons Learned in Implementing a Natural Language Chat Interface

Rahul Pandita, Steven Bucuvalas, Hugolin Bergier, Aleksandar Chakarov, and Elizabeth Richards
Phase Change Software LLC

Golden, Colorado, USA
{rpandita, sbucuvalas, hbergier, achakarov, and erichards}@phasechange.ai

Abstract
Virtual assistants have demonstrated the potential to signif-
icantly improve the digital experiences of information tech-
nology workers. We, at Phase Change Software, are work-
ing on developing a virtual assistant MIA that helps software
developers with program comprehension. This work sum-
marizes the key lessons learned and identifies open questions
during the initial implementation of the MIA chat interface.

Introduction
According to the U.S. Bureau of Labor Statistics1, software
developer jobs are projected to increase by 17 percent from
2014 to 2024; a rate that is significantly faster than the av-
erage across all occupations. This growth is fueled by an
increasing demand for computer software.

One of the problems faced by the software development
industry today is the loss of critical knowledge attributed to
the high turn-over rate for developers. (Rigby et al. 2016)
noted that a tight relationship between a developer and au-
thored code makes organizations susceptible to information
loss. One major factor is that in today’s job market, devel-
opers change jobs readily and often. Moreover, for some
technologies like COBOL, the developer population is sim-
ply retiring (with an average age of 50+) and creating a void
to be filled by a diminishing supply of COBOL developers.
All this contributes to an increasing need for training new
developers in the mastery of antiquated programming lan-
guages and management of existing large applications.

Brook’s law (Brooks 1975) states that adding a devel-
oper to a mature project impacts productivity negatively.
Specifically, (Foucault et al. 2015) show that newbies who
join the team often introduce defects in the code as they
move towards proficiency, thereby, bringing down over-
all team productivity in the process. Recently, (Minelli,
Mocci, and Lanza 2015) estimated that on average devel-
opers spend 70% of their time comprehending source code.
Moreover, (Maalej et al. 2014) find that developers are reluc-
tant to maintain and reference documentation, opting for di-
rect communication instead. With this growing body of evi-
dence showing that the developers spend most of their time

Copyright © 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1See https://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm

understanding what the code does, finding effective means to
tackle code comprehension has the potential to significantly
impact developer productivity.

With continuous advancements in artificial intelligence,
natural language processing, speech recognition, and text-
to-speech technologies, virtual assistants are transforming
the way commercial organizations interact with customers.
For instance, product websites are increasingly implement-
ing chat-bot assistants to answer frequently asked questions
and common customer complaints. We have seen a grad-
ual maturity of virtual assistants from Microsoft’s iconic but
failed Clippy to the sophisticated television quiz show win-
ner IBM Watson®. When implemented correctly, virtual as-
sistants provide economic alternatives to hiring human op-
erators who cater to the information needs of customers.

To address the problem of improving developer produc-
tivity, we at Phase Change are working on developing a
virtual assistant technology to assist a new programmer to
quickly become proficient in a new system. As we develop
this technology, we took inspiration from the success and
value proposition of generic consumer facing products like
Amazon’s Alexa®, Apple’s Siri®, Microsoft’s Cortana®, and
the Google Now® assistant. We refer to our assistant as MIA
(short for “My Intelligent Agent”) and as a first step towards
realizing MIA, we focus on program comprehension, and
gradually expanding MIA’s capabilities to program compo-
sition.

This paper outlines some of the lessons learned in imple-
menting the first iterations of MIA’s chat interface.

The J.A.R.V.I.S. Metaphor
The primary objective of the MIA interface is to facilitate
software comprehension. Since learning is a crucial part of
comprehension and people learn in different ways, MIA has
to be able to accommodate different styles and approaches.

We envision MIA’s interface akin to Marvel’s fictional AI
assistant J.A.R.V.I.S.2 A user interacts with MIA using mul-
tiple modalities such as traditional keyboard and mouse in-
puts, gesture and touch-based manipulation of objects dis-
played on the screen, and user voice commands to interac-
tively perform complex tasks. Specifically, what we aspire

2J.A.R.V.I.S. (“Just A Rather Very Intelligent System”) is a
highly advanced AI agent developed by Tony Stark.



VOICE

TEXT

AUDIO

GRAPHICS

INPUT

OUTPUT

DEVELOPER
NL	

Conversation
Agent

Figure 1: A generic NL Conversation Interface.

for with the J.A.R.V.I.S. metaphor is the “liveness” and nat-
ural human-like conversation ability to actively augment hu-
man capabilities as if it were an active collaborator rather
than a reactive question-answer system.

Our vision for the MIA interface is to cater to the needs of
various user classes. For instance, if MIA caters to develop-
ers, a typical Integrated Development Environment (IDE) is
a likely choice to model the MIA interface. Likewise, if the
intended audience is a business analyst or a program man-
ager, the ideal MIA interface reflects what they use day-to-
day to carry out their tasks. However, in this paper we only
focus on the voice and conversational aspects of MIA. We
next describe a generic NL conversation agent.

NL Conversation Agent
An AI assistant is an agent that helps humans understand
and react to a system. In our context, MIA allows a user to
comprehend and manipulate the software system, by accept-
ing as inputs user intension in the form of natural language.

In Artificial Intelligence: A Modern Approach (Russell
and Peter 1995), Russel and Norvig define an agent as a
program that maps the input (perceived by the sensors) in
an environment using a mapping function to an output (real-
ized by actuators) that is manifested in the environment. A
generic Natural Language (NL) conversation agent is shown
in Figure 1. A simplified work-flow can be thought of as:

1. the user speaks/types into the interface;

2. the interface captures audio/text through its sensors;

3. the captured audio/text is processed (interpreted) to per-
form a task to obtain results;

4. the results are then relayed to the user in the form of a user
interface change or in the form of audio.

(Hirschberg and Manning 2015) outline the major com-
ponents of an NL conversation agent (specifically, a spoken
dialog system) as Speech-to-Text (STT) system, a Dialog
Management (DM) system, and a Text-to-Speech (TTS) sys-
tem. MIA leverages various commercial off-the-shelf com-
ponents to achieve this interaction. For instance, MIA uses
external STT and TTS libraries to do audio manipulations.

However, a key component of the interaction is the DM sys-
tem, i.e., translating natural language (in text format) into
executable actions in the MIA interface.

Specifics of implementing a DM component are beyond
the scope of this paper. For the general audience, we discuss
a naive strategy to realize a DM: at its simplest, a DM can be
thought of as a giant rule-based system, where all possible
supported interactions are encoded as if-then-else rules.

Although simple to implement, such a system may not
scale well: a developer may have to encode all possible vari-
ations of natural language utterances for a given command.
Expecting users of NL conversation system to use uniform
and restricted vocabulary may be unreasonable. It may also
be unreasonable to expect users of the MIA system to struc-
ture their language in a specific style. Fortunately, exist-
ing Natural Language Processing (NLP) techniques such as
WordNet (Miller 1995) based synonym analysis and word
embedding models such as word2vec (Mikolov et al. 2014)
help deal with variations in the vocabulary. Additionally,
Parts of Speech Tagging (Klein and Manning 2003), Phrase
and Clause Parsing (Klein and Manning 2003), and Typed
Dependencies (de Marneffe and Manning 2008) effectively
deal with the structural and stylistic variations in a sen-
tence (Hirschberg and Manning 2015). With recent ad-
vances in neural network technology, it is possible to skip a
rule-based approach altogether and learn a domain-specific
conversation model (Xu et al. 2017) given a large data-set.

We leave the specifics of implementing conversation
agents to focus on generalizing our experience with MIA.

Usability Considerations
In this section, we briefly discuss following Nielsen’s Us-
ability Heuristics (Nielsen 2005) in the context of the MIA
interface. Although, we used these heuristics as guidelines
to design MIA, we believe these are generic guidelines for
designing an effective NL conversation agent interface.

Visibility of system status: Ideally, agent conversations
should strive for real-time performance. However, there ex-
ist cases when a request takes time to process. Agents should
keep their users informed about processing through appro-
priate feedback.

Match between system and the real world: Agents
should respond in the users’ vocabulary (user words and fa-
miliar phrases), rather than system-oriented terms.

User control and freedom: Agents should allow a user
to quickly undo an action that a user may have performed in
error. Likewise, an agent should support a quick redo of an
action that a user may have undone in error.

Consistency and standards: Agents should communi-
cate with their users in a consistent vocabulary. This allows
a user to navigate unfamiliar situation with the established
conventions of the terminology.

Error prevention: Agents should actively support error
prevention. In case of ambiguity, users should be consulted
to confirm before an agent commits to an action.

Flexibility and efficiency of use: Agents should cater to
the needs of novice users as well as expert users. The in-
terface should allow for expert users to input complex utter-
ances by means of shortcuts (keywords).



Help users recognize, diagnose, and recover from er-
rors: Error messages should be crafted such that they help
users to effectively understand the problem and should also
constructively suggest a solution.

Lessons Learned
In this section, we outline some of the lessons learned during
the course of implementing the first iteration of MIA. This
list is by no means exhaustive as we are actively developing
the MIA system. We, however, hope that this list provides a
starting point for other teams that are in the initial phase of
implementing an NL virtual assistant.

Reuse components to quickly prototype. Although this
may be generic advice, we did learn that reusing existing
components such as TTS, STT, NLP annotations, and rule
engines allowed us to quickly prototype the MIA system.
Furthermore, it bought us time to focus on the interaction
itself rather than on the technologies that normally involve
significant investments in time and resources.

Gradually migrate from rule-based to statistical ap-
proaches. Our implementation of the MIA interface started
as a simple “if-this-then-that” system. We hand-crafted the
initial set of rules of the NLP component based on prelimi-
nary requirements. We also chose to collect interaction data
as a means to for later improvements to the system.

Query reformulation (Hearst 2009) is a query strategy
in which users first execute a general query and then it-
eratively refine subsequent queries to fine-tune the search
results. Search engine users frequently employ this strat-
egy (Jansen, Spink, and Pedersen 2005) and we empirically
corroborated that MIA users employ similar ones. We used
this opportunity to collect variations of multiple queries as
formulated by the users. This data was used to further refine
the rules in the NLP component to improve performance.

We realized rule-based approaches do not scale as new
interaction functionality is added to MIA; however, we did
not initially have data to use statistical approaches. Most
teams starting chat-bot implementations rarely do.

One alternative is to train a model on external yet similar
data and then use transfer-learning to customize the model
for the specific domain. However, we observed that often the
requirements and capabilities of the interface are not well-
formed initially but evolve over time before settling. Given
the instability of requirements and the large upfront cost of
statistical approaches, we recommend starting with simple
rule-based approaches and gradually migrating to statistical
ones.

Adopt Recommendation Systems. While developing
MIA, we painstakingly encoded every possible scenario that
our team could imagine so that MIA could handle almost
anything thrown at it. However, even after multiple iter-
ations, we still missed some combination of tokens in the
query. Initially, MIA handled such scenarios by respond-
ing generically: “I don’t quite understand, let’s try again.”
While it is a fair response, users get frustrated when MIA
does not provide ways to remedy the situation. We put in
a basic recommendation system (Resnick and Varian 1997)
that allows MIA to propose alternate queries as a function

of keyword matching whenever MIA does not understand a
user query. In practice, we found that responding with a rec-
ommended query almost always remedies the situation.

On the flip side, we learned that users are also irked if
there are too many recommended queries or they are too far
from the user’s intention. Thus, we filter our recommenda-
tions using a threshold and only show recommendations if: a
suggestion scores above the predetermined aggregate thresh-
old (we employ multiple scoring mechanisms) and the total
number of recommendations does not exceed three (derived
empirically).

Over time users stop using fully formed sentences. In
practice, we noted that although bot interaction started with
well-formed sentences, it quickly moved to keyword utter-
ances and sentence fragments. Thus, an interpretation com-
ponent should be designed to handle such multi-modal inter-
actions. This is especially pertinent to rule-based interpreta-
tion components. We still emphasize handling fully-formed
sentences as we observed that whenever MIA users encoun-
tered unexpected results, they reverted to using fully-formed
sentences. Additionally, we noticed that users seldom use
more than two clauses while interacting with MIA. This al-
lows us to optimize the design by targeting up to two clauses
as opposed to an arbitrary number of clauses.

Subliminal Priming. In psychology and cognitive sci-
ence, subliminal priming (Kiesel, Kunde, and Hoffmann
2007) is the phenomenon of eliciting a specific motor or cog-
nitive response from a subject without explicitly asking for
it. We stumbled upon this effect while developing MIA.

Our initial beta tests achieved a fair performance. How-
ever, MIA often completely missed what a user requested.
As testing progressed, we observed that MIA’s performance
improved significantly, without changing the implementa-
tion. We investigated and observed that beta users slightly
altered their approach to interacting with the system. They
spoke with a slightly affected accent on the words that
caused problems for the STT component which resulted in
a better translation. Likewise, users also tried variations and
then adhered to a specific vocabulary which they perceived
worked.

Encouraged by observations, we experimented with a fea-
ture in the MIA interface, where MIA spoke back a normal-
ized version of the user’s query. We experimented with text
mining techniques such as collapsing synonyms and using
operational forms of verbs. We observed that speaking back
a normalized version of the query caused the users to quickly
converge on a specific vocabulary and sentence construction
that in turn significantly improve the performance of MIA.

Data driven prioritization: Due to resource constraints,
we often face the question of prioritizing action items for the
next iteration of implementation. While, in an ideal world
we would have an infinite number of resources, that is not
necessarily the case in real world. In such situations, we
found data to be extremely valuable in arriving at decisions.

For instance, during one of the iterations, we had a choice
of upgrading our STT component or further improving the
performance of our NLP engine. The general sentiment in
the team was to improve the NLP engine, primarily because
the component was developed in-house and that was where



most of the team had focused. However, the error analysis
indicated that if we improved the STT component, the over-
all accuracy of the system would increase significantly (by
a few percentage points) more than by improving the NLP
engine. The error analysis included manually analyzing a
random (yet significant) sample of the errors observed with
each component to assess the perceived improvements. Al-
though, we were using STT as an external service, switching
serves would require significant work to accommodate the
requirements of the different provider.

Open Questions
Going forward with MIA’s development there are two key
open questions that we are investigating.

Conversational Models: The current implementation of
MIA can best be described as a one-shot-interpretation. This
means that MIA accepts as input natural language and de-
termines the best possible match for the action to be un-
dertaken. While simple to engineer as a system, one-shot-
interpretation is far from a natural conversation form. In
natural conversation, the current utterance is both influenced
and resolved as a function of past utterances. Furthermore,
natural conversations are often guided by a goal. The goal in
turn influences the directions a conversation takes and serves
as a mechanism to detect and recover from digressions.

We are experimenting with strategies such as maintain-
ing a cache of the past N utterances to explicitly model the
latent state. It is still unclear how to efficiently model con-
versations and make MIA interactions more natural.

Bot cognition: We currently evaluate virtual assistants
using the traditional quantitative statistical measures of pre-
cision, recall, and accuracy. In contrast, we qualitatively
evaluate them on human-like conversation, problem-solving
ability, and cognition. However, it is unclear what we mean
by the analogy of evaluating cognition when applied to bots.

Bloom’s Taxonomy (Anderson et al. 2001) has been used
in education as a model to classify a learning objective using
levels of complexity. In particular, Bloom’s Taxonomy pro-
poses the following levels of objectives (orders from lowest
to highest): Remember ⇒ Understand ⇒ Apply ⇒ Analyze
⇒ Evaluate ⇒ Create.

Although it is an appropriate and valuable lens to look
at human cognition, Bloom’s Taxonomy (or some variation
of) may not be appropriate or even applicable to a virtual
assistant. Nevertheless, it is highly desirable to have a lens to
evaluate and better understand such aspects of bot cognition.

Conclusion
In this paper, we presented our motivation for building MIA,
our J.A.R.V.I.S-like conversational agent, to bring the ben-
efits of virtual assistants to software developers. MIA is
a work in progress, and we summarized some of the key
lessons learned and open questions we encountered while
engineering the first iteration on MIA. We hope that our ex-
perience helps other developers or teams working on virtual
assistants. In addition, we hope that the questions of effec-
tive conversation model and how to evaluate bot cognition
garners further discussions and scientific work in the area.

References
Anderson, L. W.; Krathwohl, D. R.; Airasian, P.; Cruik-
shank, K.; Mayer, R.; Pintrich, P.; Raths, J.; and Wittrock,
M. 2001. A taxonomy for learning, teaching and assess-
ing: A revision of bloom’s taxonomy. New York. Longman
Publishing. Artz, AF, & Armour-Thomas, E.(1992). Devel-
opment of a cognitive-metacognitive framework for protocol
analysis of mathematical problem solving in small groups.
Cognition and Instruction 9(2):137–175.
Brooks, F. P. 1975. The mythical man-month.
de Marneffe, M. C., and Manning, C. D. 2008. The stanford
typed dependencies representation. In Workshop COLING.
Foucault, M.; Palyart, M.; Blanc, X.; Murphy, G. C.; and
Falleri, J.-R. 2015. Impact of developer turnover on quality
in open-source software. In Proc. of the 10th FSE, 829–841.
ACM.
Hearst, M. 2009. Search user interfaces. Cambridge Uni-
versity Press.
Hirschberg, J., and Manning, C. D. 2015. Advances in nat-
ural language processing. Science 349(6245):261–266.
Jansen, B. J.; Spink, A.; and Pedersen, J. 2005. A temporal
comparison of altavista web searching. Journal of the Asso-
ciation for Information Science and Technology 56(6):559–
570.
Kiesel, A.; Kunde, W.; and Hoffmann, J. 2007. Mechanisms
of subliminal response priming. Advances in Cognitive Psy-
chology 3(1-2):307.
Klein, D., and Manning, C. D. 2003. Fast exact inference
with a factored model for natural language parsing. In Proc.
15th NIPS, 3 – 10.
Maalej, W.; Tiarks, R.; Roehm, T.; and Koschke, R. 2014.
On the comprehension of program comprehension. ACM
Transactions on Software Engineering and Methodology
(TOSEM) 23(4):31.
Mikolov, T.; Chen, K.; Corrado, G.; Dean, J.; Sutskever, L.;
and Zweig, G. 2014. word2vec.
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Minelli, R.; Mocci, A.; and Lanza, M. 2015. I know what
you did last summer: an investigation of how developers
spend their time. In Proc. of the 23rd ICPC, 25–35. IEEE
Press.
Nielsen, J. 2005. Ten usability heuristics.
Resnick, P., and Varian, H. R. 1997. Recommender systems.
Communications of the ACM 40(3):56–58.
Rigby, P. C.; Zhu, Y. C.; Donadelli, S. M.; and Mockus, A.
2016. Quantifying and mitigating turnover-induced knowl-
edge loss: case studies of chrome and a project at avaya. In
Proc. of the 38th ICSE, 1006–1016. ACM.
Russell, S., and Peter, P. N. 1995. Artificial Intelligence. A
modern approach. Prentice-Hall, third edition.
Xu, A.; Liu, Z.; Guo, Y.; Sinha, V.; and Akkiraju, R. 2017. A
new chatbot for customer service on social media. In Proc.
of the CHI, 3506–3510. ACM.


