

© 2017 Phase Change Software LLC
1

An Analogy: Software AI and Natural Language

by Steve Bucuvalas, CEO, Phase Change Software

January 2017

While recently rereading Ray Kurzweil’s "How to Create a Mind," I realized that his

discussion of Natural Language Processing technology (NLP) and its consequent

economic impact, are close analogies to the technology and impact of Phase Change in

the software domain.

My intention here is to briefly describe Phase Change’s technology and its impact, using

the concepts that Kurzweil eloquently develops in his book. His larger theme of creating

a general artificial intelligence (AI) is interesting and perhaps relevant, but I will defer

that to another time.

Software and Information Technology

Software is the critical ingredient in the economic explosion in the use and value of

information technology. Even so, prior to Phase Change, software development and

engineering have not themselves become an information technology. This subtle

distinction may need some explanation to see the rather glaring incongruity. It can be

clarified by looking at the recent history of Natural Language Processing (NLP).

Over the last 30 years, through the efforts of Ray Kurzweil and many others, we as an

industry have brought human language:

➢ from a state in which only humans could interpret and use the meaning of

text and speech

➢ to a state in which AIs are interpreting and using the meaning of text and

speech

The impact is enormous, with some stunning examples:

➢ we can talk to our smart phones, directing their actions, asking arbitrary

questions, expecting definite answers

➢ a technology company has created a Jeopardy® playing AI, which read and

understood the knowledge in Wikipedia, and beat the best human Jeopardy®

players

© 2017 Phase Change Software LLC
2

My core point here is this: AI interpretation of the meaning of text and speech is what

made human language an information technology. Kurzweil’s notion of the Law of

Accelerating Returns (LOAR) certainly applies to NLP. Chatbots and other applications

are exploding in all industries.

This has been achieved even though human language is fraught with ambiguity, hidden

contextual references, and social meaning – creating inaccuracies in interpretation in

the current state of the art of NLP, which somewhat limits its utility.

Phase Change is doing the same with software – but with complete logical accuracy –

since the handicaps inherent in the interpretation of human language by NLP are not

present in the interpretation of programming languages. Prior to Phase Change,

software could be interpreted only by humans. People needed to read software text

composed of a formal programming language, and, with careful reading and thought,

derive its meaning. Now Phase Change has created the capability for AIs to interpret

the meaning of software.

And so, the LOAR can now be applied to software development and engineering. This

makes our prediction of two orders of magnitude improvement in productivity look

modest.

It is.

Software’s Practical Problem

To solve a problem as hard as “interpreting the meaning of software,” you must start

with understanding the nature and essence of the problem. This is essential to the next

step, which is applying the right formal and scientific tools.

Software’s problem is one of practical development and engineering. The productivity

and quality for the development process does not scale. To borrow the visual metaphor

from Fred Brooks “The Mythical Man Month,” it is stuck in a tar pit.

The breakthrough insight in the problem’s essence is that we’re developing practical

physical computational systems, not abstract mental models of computation. This

observation changes the broadly held notions of limits and constraints on software as

an information medium. Physical systems are always finite, although it is sometimes

useful to think of them as being infinite. In fact, and in substance, no physical

computational system is infinite.

The implications of this observation are not obvious. Again, an example may help.

http://www.ted.com/talks/ray_kurzweil_on_how_technology_will_transform_us/transcript?language=en
http://www.ted.com/talks/ray_kurzweil_on_how_technology_will_transform_us/transcript?language=en

© 2017 Phase Change Software LLC
3

Consider the Turing Halting Problem: the analytical limits derived by the halting

problem results cannot be validly applied to a physical software system. I want to

emphasize: the previous sentence asserted Turing’s limits “cannot be applied.” Turing

constructs a counter-example for which halting cannot be proven without paradox, but

the “source code” of the counter-example is necessarily infinite in size. The counter-

example literally cannot exist in a physical world. By the way, this is not a criticism of

the legendary Alan Turing, his proof is totally correct in the world of abstract

computation, and the results apply to abstract computation. It simply doesn’t apply to

solving software’s practical problem. This is also true of the Halting Problem’s

intellectual derivative, Rice’s Theorem. Rice’s results similarly do not apply to physical

computational systems.

In physical computation, the concept of decidability must be adjusted for a physical

computational system. We are forced to use a different type of mathematics. With this

understanding, that applied software and computation are physical systems, the

choices in mathematics and science follow.

Formal Data Type

Phase Change turns the text of programs into a formal data type. Much as with

“floating-point” or “int” we have formal operations that we use to manipulate the data

type in algorithms. We call this data type a “formal software concept.” One can think

of these formal concepts as something akin to a design pattern, only operating on

multiple levels of abstraction from “ground” program units to abstract design patterns

and OO class concepts.

This formal software concept is not the text of the programming language, although

there is an essential correspondence between source code and meaning. It is a physical

symbolic structure that is the fundamental unit of software meaning. Phase Change

extracts this normalized representation using compiler and program analysis

technology.

Formal operations on software concepts use intuitionistic set theory, an application of

abstract algebra, and probabilistic reasoning. Much like numeric operations on numeric

data types, the concept operations are guaranteed to work, regardless of scale.

Again, we have an analogy to NLP. In NLP, the natural language text or speech

corresponds to the meaning, but AI’s capacity to understand is based on formal

concepts, a separate and very non-obvious representation.

© 2017 Phase Change Software LLC
4

The Phase Change extraction techniques work for any programming language, and

across different programming languages. And again, in parallel with NLP, there are a

great many different human languages. But largely our minds internally understand

language concepts “the same” regardless of the language spoken. Whether I’m speaking

my native tongue or a foreign one, both languages map to common concepts in my

mind.

Hierarchical Recursive Concepts

Much like the work in NLP processing, Phase Change organizes the formal concepts into

hierarchical structures, which are probabilistically linked: horizontally and vertically.

Much like the human neocortex, the concepts become more abstract as one moves up

the hierarchy.

Thus, at the ground-level one can ask (using a NLP chatbot) a question about the

concrete use-cases in a software application. But one can also ask questions at a more

abstract level, about a class of software applications without regard to implementation,

for example, “what is a banking application?”

The probabilistic reasoning generally uses the Bayesian approach, in which the network

topology is specific to the applied software development domain. We believe we’ve

optimized Ray Kurzweil’s concept of “modeling at the right level.”

Not to belabor the analogy, but NLP’s success stems from this same ability to create

hierarchical representation of patterns between phonemes, words, and concepts.

Big Understanding, Big Data

The AI Jeopardy® champion became dominant because its creators directed it to absorb

the machine-readable natural language text in Wikipedia and other sources. Its stunning

competence stemmed from its ability to transform that text into a massive conceptual

structure. Not surprisingly, it is a conceptual structure of hierarchical recursive

concepts.

Similarly, Phase Change technology’s approach increases in competence and value as

the scale of its knowledge increases. It works on individual programs, but it’s value will

increase when it can absorb applications and portfolios on a company and industry

scale.

Obviously – and fortunately – this body of source code is already machine readable, and

is much larger and more economically significant than Wikipedia.

© 2017 Phase Change Software LLC
5

Equally obvious, much like human language is partitioned into many individual

languages, so is software partitioned into many programming languages. Fortunately, a

few dominant programming languages account for the vast majority of economically

important software.

Creating the formal software concepts for software applications is the threshold to

Kurzweil‘s Law of Accelerating Returns, and our prediction of at least two orders of

magnitude productivity improvement.

The effect of recognizing the inherent concepts and abstractions in a single commercial

application (whether a banking system or a video game) will change the game for the

corresponding software teams' engineers, and catalyze these startling productivity

improvements.

